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Starting from the known average structure (Dubbeldam & de Wolff, Acta Cryst. (1969), B25, 2665- 
2667) and four-dimensional space group, the actual modulated structure has been determined by tak- 
ing into account 758 newly measured main reflexions and 1152 first-order satellites. The analysis is 
based on a harmonic displacive modulation model, with 14 modulation parameters as well as 9 posi- 
tional and 26 thermal parameters (individual anisotropic, in Debye-Waller factors of the usual type). 
The final value of YA/Y~Fo is 0.108 excluding, and 0.238 including non-observed reflexions. The main 
features of the modulation are (a) an overall modulation with an amplitude of close to 0.33 A, for all 
atoms except oxygen; (b) an orientational modulation of the COa ion which is out of phase with the 
overall modulation. Calculation of the interatomic distances yields the result that the Dab symmetry 
of the CO3 ions is hardly distorted by the modulation. Certain second-order effects point to anharmonic 
components in the modulation, with amplitudes up to 0"03 A,. The structure turns out to consist of 
chains of NaO6 octahedra sharing faces and with Na-O bond lengths under 2"45 /~, showing little 
variation. The chains run in the direction of c and are mutually coupled in other directions by CO3 
ions. The remaining Na atoms occupy the remaining spacious voids; their distances (averages > 2.60/~) 
to eight out of the nine surrounding oxygen atoms vary strongly, and for each with a different phase. 

1. Introduction 

The diffraction pattern of ~,-NazCQ has Laue symme- 
try 2/m. Indeed a large number of reflexions - in 
particular those most prominent in the low-angle 
region - can be assigned to a normal monoclinic 
reciprocal lattice with basis vectors a*,b*,c*, b* being 
perpendicular to a* and c*. However, each of these 
'main reflexions' is accompanied by a number of 
'satellites' which can be described by introducing a 
fourth index m and an extra basis vector 

q* = q~a* + qac* (1) 

in an extended form of the diffraction vector equation 

H=ha* +kb* +lc* +mq* (h,k,l,m integer). (2) 

Obviously ql and qa could be approximated by frac- 
tional numbers and suitable new axes could be chosen 
so as to retain triplets of integers instead of the above 
four. Such a procedure can be useful for descriptive 
purposes (cf. § I0) but it has no physical meaning. Not 
only does it involve large index values and strange 
extinctions, but it cannot possibly cope with the fact 
that ql and q3 in (1) are markedly and continuously 
dependent upon the temperature [Brouns, Visser & 
de Wolff (1964); cf. also Fig. 1 in the paper by de 
Wolff (1974)]. Therefore the addition of the fourth 
term in (2) must be regarded as essential. 

The following systematic extinctions occur: 
- Reflexions with h+k odd are absent for all land m. 
- F o r  k=O, all odd-order satellites (m odd) are 

absent (de Wolff & van Aalst, 1972). The presence of 
weak even-order satellites had formerly been over- 
looked; hence the erroneous statement in the earlier 
papers that no satellites at all appear for k = 0. 

Numerical values of parameters at room temper- 
ature are: a = 8.904(3), b = 5.239(2), c = 6.042(2) ,&_; 
fl--101.35(2) °, q1=0.182(1), q3=0.318(1) where the 
vectors defined by a,b,c and fl are reciprocal to the 
basis a*,b*,c* and define what we call 'the unit cell'. 

The anomalous satellite reflexions can be inter- 
preted as the consequence of a displacive modulation, 
that is, a stationary lattice wave in which each of the 
atoms in the unit cell can have its own wave form, 
amplitude and phase but all have the same wave 
vector q* defined by (1). This picture will be expressed 
in mathematical terms below [equations (3)...(8)]. 
The actual wave front is roughly parallel to (20T) and 
the wavelength is about 16 A. The fact that the inten- 
sity of satellites, though very irregular as a function of 
the indices, is on the whole very weak for k = 0  and in 
general increases with increasing k indicates that 
displacements in the direction of b form an important 
component of the modulation. 

In view of the prominence of main reflexions (at 
least for k up to 4) a first approximation to the struc- 
ture can be obtained by disregarding the satellites. The 
electron density distribution so obtained is the average 
of the distributions in all unit cells. This 'average 
structure' was derived by Dubbeldam & de Wolff 
(1969). Since a and ¢ are obviously not exact repeat 
translations of the actual structure, the average 
structure cannot be expected to consist of unambig- 
uous atoms. 

In fact, after a first trial with single atoms had 
failed, a satisfactory agreement was obtained when all 
atoms were equally divided over two positions; of. Fig. 
1. The space group of this average structure is C2/m, 
and the two positions of each atom are related to each 
other by the mirror plane. Only the layers k = 0 . . . 3  
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were taken into account, however, so that no con- 
clusions could be drawn as regards the actual average 
distribution of atoms in the unit cell. In particular, a 
continuous distribution on a line connecting the two 
components of a split position could equally well 
explain the data available at the time. 

In this respect, a peculiar situation exists with regard 
to the atoms O(1) and 0(3). Fig. 2 shows the projection 
of the COa ion along the line C-O(2). Both C and 0(2) 
are very close to the mirror plane m and are drawn as 
single atoms (coinciding in this projection) for sim- 
plicity's sake. The split atoms O(1) and O(3), however, 
have distances of about 1 /k to the plane m. Assuming 
the CO3 ion to be rigid, O(1) and 0(3) will have to lie 
on a circle as shown. If a continuous distribution of 
these atoms exists, it seemed very likely that it would 
cover the short arcs e rather than the very long arcs 6, 
since positions on 6 would be incompatible with 
reasonable distances of O(1) and 0(3) to the sur- 
rounding Na atoms (drawn schematically in Fig. 2 in 
order to show their relatively small distance to m 
planes). 

Moreover, the fact that satellites for k = 0  had not 
at that time been observed seemed to allow shifts in 
the b direction only, and thus to exclude intermediate 
positions both on the arcs e and 6. The conclusion was 
drawn that O(1) and 0(3) occupy discretely split 
positions, with little or no electron density in between. 
Hence the statement by Dubbeldam & de Wolff (1969) 
that the structure is of the domain type, with the two 
CO3 orientations alternating in consecutive lamellar 
domains. 

The observation of satellites for k =0  was a crucial 
point in the structure analysis, as it opened the 
possibility of a smooth distribution of O(1) and 0(3) 
on the arcs e. Accordingly, the domain structure 
hypothesis was given up. In terms of the modulation 
functions (cf. below) this meant that the square wave 
corresponding to the domain structure could now be 
replaced by much smoother types of periodic functions. 
The present paper describes the outcome of an analysis 
based on harmonic displacive modulation as a first 
approximation. 

Regarding the definition and symmetry properties of 
modulated structures, our analysis will follow the 
general treatment published recently (de Wolff, 1974). 
In that paper, displacive modulation is defined by 
ordered displacements of the atoms of a normal 
reference structure. Let an atom of the ith kind be 
located, in the reference structure, at 

~; = R;a + ~ ; b +  -~;c (3) 

with respect to an origin in a specified unit cell. 
Primed symbols are used for quantities depending on 
the unit cell in which the atom is situated. The dis- 
placement of this atom 

A; = u;a + v~b + w;c (4) 

is defined by 

u;=u,(r;) v;=v,(r;) w;=w,(r;) (5) 
u~, v~ and wi being the 'modulation functions'. These 
are periodic with a period of unity. Their argument T; 
in (5) takes the value 
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Fig. I. The split-atom approximation of the average structure 

as determined by Dubbeldam & de Wolff (1969) (a) pro- 
jected along b; (b) projected along c. Atoms are combined 
to CO3 ions either by full lines or by broken lines; the other 
atoms shown are Na. 
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Fig. 2. Schematic projection along the direction C-O(2) of one 
CO3 ion and a neighbouring Na atom. The overall shift of 
the anion and the rotation in its own plane [Fig. l(b)] has 
been omitted here. 
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Fig. 3. Sections of the reciprocal lattice, taken from a series of photographs by Tuinstra & Fraase Storm (1972). (a), (b), (c): 
retigrams with lattice of main reflexions drawn in. The small plots represent the intensities of a main reflexion and its satellites, 
calculated from equation (20) with V=0.065. (a) k=0 ,  with some weak second-order satellites e.g'. (4012) and (0032). 
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Fig. 3 (cont.) (b) k---3, a fourth-order satellite is visible near the centre (132g). 



W. VAN AALST,  J. DEN H O L L A N D E R ,  W. 

z~ = q * .  ~ (6) 
o r  

"r'~ = q12~ + qz.v'~ + q3~'~ (7) 
for the atom under consideration, while 

q*=qla*+q2b*+q3c* [of. equation (1)1 (8) 

is a fixed vector. Satellites are thereby generated at 
points in reciprocal space given by equation (2). It is 
shown that the resulting modulated structure can be 
obtained as the intersection of normal space (R3) with 
a four-dimensionally periodic structure in R4, in which 
each atom is represented by a string running in the 
direction perpendicular to R3. Periodic bending of 
each string (so as to make it follow a wavy line) 
accounts for the displacive modulation. This descrip- 
tion is especially useful for symmetry considerations 
(cf. § 3). 

For the periodic functions we shall use the harmonic 
approximation: 

u~z = Uc~ sin 2nz + Us~ cos 2nz , 
and similarly for v and w. (9) 

It should be stressed that this is but an approximation. 
The actual modulation functions must contain higher 
harmonics (cf. §7), which will be the object of further 
research. The harmonic function (9) has, however, 
proved to be such a close approximation that separate 
publication of its results seems justified. 

Of course one could replace (9) by expressions like 

ui = U~ sin (2nr + ~i) v~ = V~ sin (2nz +fit) 
wi = Wi sin (2nz + y,). (9a) 

Since the field of parameters (U,,ch) has a singular 
branching line for U, =0, we prefer U~, and Uc~ for the 
purpose of refinement. 

2. Experimental 

Small crystals of NazCO3 were obtained by evaporation 
of an aqueous solution under a vapour pressure of 
about 1½ bar. This was done in order to obtain a 
boiling point (about 120°C) sufficiently far above the 
temperature (107°C) where the anhydrous carbonate 
and the monohydrate are in equilibrium as solid 
phases under a saturated solution. The crystals were 
obtained as thin platelets, with a hexagonal shape 
(cross section up to 5 mm, thickness up to 0.3 mm), 
and parallel to the ab plane. Since Na2CO3 is extremely 
hygroscopic, crystals were sealed in Lindemann glass 
capillaries for exposure. From a suitable crystal 
fragment, retigrams were made of the layers k = 0 . . .  5 
(Cu Ka) and 6 . . .  l0 (Mo KoO, (of. Fig. 3) by Tuinstra 
& Fraase Storm (1972), using the Nonius retigraph. 
These photographs at once provided an important 
clue to the modulation (§6). Moreover they were 
extremely useful as reference material at all stages of 
the analysis. 

Another fragment, roughly in the shape of a sphere 
~ =0.3 mm was mounted on an Enraf-Nonius three- 
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circle diffractometer. With this instrument, using 
Mo Ka radiation, main reflexions and satellites for 
h = 0 . . . 1 6 ,  k = 0 . . . 1 0 ,  l = - 1 2 . . . 1 2  and m = - 4 . . . 4  
were measured, about 10000 in all. For this purpose, 
the control program was modified so as to allow the 
addition of a fractional number mql to h, and mq3 to l. 

All reflexions with the same value of m were mea- 
sured in the same run. Absorption was neglected 
because of the approximate sphericity of the crystal 
wi th/zD_ 0.17. 

3. Point group and space group 

In terms of the indices h, k, I and m, the Laue symmetry 
2/m is generated by the diagonal matrices (_1)(1) 

2 ' =  1 and m = - 1 
- 1  1 

- 1  1 

(10) 

The prime in 2' stands for reversal of the sign of the 
fourth reciprocal coordinate m. In the point group of 
the actual four-dimensional structure, the matrices (10) 
operate on the coordinates in R4. Because of Friedel's 
law, however, this point group need not be 2'/m but 
could also be either 2' or m (The prime now means 
sign reversal of the fourth coordinate in direct space.) 
In the latter case, one would expect the average 
structure to have the point group 2 or m, respectively, 
as it is just the projection of the structure in R4 along 
the fourth basis vector. Since the average structure 
has been refined successfully in the point group 2/m, 
the four-dimensional point group 2'/m can be assigned 
to the structure in R4 with reasonable certainty. This 
assumption is further justified by the results of the 
present analysis. 

Regarding the space group, the general extinction 
for h + k  odd (all l and m) shows the presence of a 
centring translation (~z00) in the four-dimensional 
structure. The 2' operator is present as such, since 
there is no extinction in the row (0k00). The mirror 
hyperplane, however, has to be a glide plane. As a 
matter of fact, a true mirror hyperplane in R 4 would 
create special positions which in the average structure 
would show up as splitting or smearing out in the 
corresponding plane in R3. The actual splitting of 
positions in that plane, however, is in the direction 
perpendicular to the plane. Hence, the four-dimen- 
sional structure can have glide hyperplanes only. 

Since the main reflexions (hOlO) do not show any 
extinctions, the glide component of these mirrors must 
have the direction of the fourth base vector a4.* This 
conclusion was subtantiated by extra-long exposures 

* After  we published this derivat ion of  the space group (de 
Wolff  & van Aalst,  1972) it turned out  that  it had in essence 
been privately communica ted  to us in 1971 by Dr  P. la Fleur  
(Nijmegen),  to whom we had ment ioned the problem. We are 
glad here to acknowledge Dr  la Fleur 's  priori ty.  

A C 32B - 4 
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Fig. 3 (cont.) (c) k =  5; (d) precession photograph, representing the plane containing all (OkOm) rows of reflexions. Other rows 
appearing in this picture are not in the plane and therefore have split reflexion spots. 

[ To face p. 49 
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which clearly demonstrate the extinction of (hOlm) 
satellites with m odd, as mentioned in § 1. 

The resulting space group has the following eight- 
fold general positions expressed in the coordinates 
x,y,z,~ in R4 [relative to basis vectors which are re- 
ciprocal to a*, b*, c* and q*+a4, cf. de Wolff (1974)], 
the origin being chosen in an inversion centre, whereas 
the lower part gives the coordinates used in §1, 
the primes on 2, .P, ~, u, v and w being left out for 
clarity's sake: 

Four-dimensional 
(0000), (~00) + 

x y z 
- x  - y  - z  - ~  

x - y  z ½+~ 
- x  y - z  ½ - ~  

Three-dimensional 
(000), (~0)  + ? 

2 + u(r)  p + v(r)  ~ + w(r )  
- 2 - u ( -  3) - p - v( - r) - e - w(  - r) 

2+u(r+½)  - ~ - v ( r + ½ )  ~+w(r+½) 
- . ~ - u ( - r + ½ )  - y - v ( - r + ½ )  - ~ - w ( - r + ½ )  

(II) 

It belongs to the triclinic system in R4, and it is an 
extension of the arithmetic class No. 8 in the table by 
Fast & Janssen (1968). 

4. Structure factor 

One of us has shown (de Wolff, 1974) that the actual 
structure factor can be calculated by a four-dimensional 
Fourier transformation of the periodic structure in R4. 
It should be kept in mind that in R4, the atoms are 
not point- or sphere-like, but are represented by the 
strings mentioned in § 1 and described by the equations 
(9). The scattering power of one atom, f~, is smeared 
out along one period of the ith string. In the paper 
just mentioned, the structure factor for a single string is 
shown to be (with present notation, and leaving out 
the index i for convenience) 

I' f e x p  {2rci(h2+kfi+l~)} dr exp [2rci{(h+mql)u(r) 
0 

+(k +mqz)v(r)+(l+mq3)w(r)+mr}] . (12) 

We now introduce the harmonic modulation. Sub- 
stitution of (9) changes the integral into 

i 1 dr sin 2nr 2ni[(h' U~ + k' V~ + l' W~) e x p  
0 

+(h'Us+k'Vs+l'Ws) cos 2nz+mz] (13) 

where we have used the coordinates h'k'l' of the 
diffraction vector 

1" To be read 2 -+ 2 + ½ and fi --> y + ½ so that, according to 
(7), r also changes! 

h'=h+mql k'=k+mq2 l '=l+mq3. (14) 

If we define, moreover, 

[(h'Us+k'Vs+l'Ws)Z+(h'Uc+k'V~+l'WJ]l/E=Z (15) 

(h',Uc+klVc+l;W~)/Z=cos 2 ~  (16) 
(h Us+k Vs+l Ws)/Z=sin2~( J 

the integral (13) becomes 

I x dr sin [2zc(r +~)] +mr})  (2zci{Z e x p  

=exp {2zcim(-(+½)}Jm(2rcZ). (17) 

Substitution in (12) and addition of the contribution 
of a centrosymmetrically situated string - as the second 
position in (11) to the first - gives for this centro- 
symmetric pair: 

2 ( -  1)mfcos {2zc(h2 + k P+ l~- m~) }Jm(ZrcZ) . (18) 

While the above formula describes the general centro- 
symmetric case, those that follow (19. . .22) apply to 
the case in hand described by (11) and by q2=0. 

For the third atom of (11), the signs of 33 and of Uc, 
We, Us and Ws have to be reversed. In (15) and (16), 
this yields parameters Z -  and ~- different from Z 
and ~. 

Hence the total structure factor for the eightfold 
position becomes: 

4 ( -  1)'"f[cos {2zc(h2 + kj3 + l_~- m~) }J,,,(2zcZ) 

+cos {2rc(h2-k~+12-m~-)}Jm(2~zZ-)]. (19) 

5. Positions in R4 

Since O(1) and 0(3) are distributed over the arc e in 
Fig. 2 (as explained in § 1), the upper two half atoms in 
that figure together form a single string in R4. Its 
image formed by the glide mirror hyperplane obviously 
consists of the lower two half atoms. Hence O(1) and 
0(3) together occupy a single general position. We 
shall denote this oxygen position as O(13) [short for 
O(1)+O(3)]. 

All other atoms have to occupy special positions, 
because their multiplicity is lower than 8. Looking in 
R4 along the fourth basis vector a4, the strings re- 
presenting these atoms are projected (approximately) 
as the split atoms in the average structure. For all of 
them, the split atoms are very close to a mirror plane. 
Hence all these strings must coincide with their glide 
mirror images: 

u ( r ) = u ( ~ + 9  -v ( r )=v( r+½)  w(r)=w(r+½) 

so u(r) and w(r) have even harmonics only. The 
function v(r), on the other hand, has only odd-order 
Fourier coefficients. In the present case, and with 
harmonic modulation, this means that Uc = Us = Wc = 
Ws=0; only Vs and Vc do not vanish for O(2),C, Na(3). 

The strings for Na(1) and Na(2) are projected close 
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to inversion centres. With their multiplicity 2, they 
must be invariant for the corresponding centres in R 4. 

We choose a centre through which the Na(1) string 
passes as the origin in R4. Then v(z) is an odd function, 
and for Na(1) and Na(2): Vs=0 as well; only V~ is left. 
The structure factors for these special positions are 
readily obtained from the general expression (19): 

Fourfold position [O(2), C, Na(3)]: P = 0 or ½ and 
fl=2~z( [equation (9a)], while ( - = ( .  The total contri- 
bution becomes: 

( - -  1 )m4Ucos  {2re(h2 +kfi+12-mOJm(2~kV); 
t an (0=V, /V~;  V 2 = V ~ + V  2.  (20) 

Twofold position [Na(1), Na(2)] 

Na(1)(2= ~=~=0) :  ( -  1)mZfJm(ZrckVc) (21) 

Na(2)(2=P=0,  2=½): ( -  1)"+~2fJm(ZrckV~). (22) 

6. Determination of the modulated structure 

The determination of the modulation parameters took 
a long time, because we only gradually became aware 
that the complete set, including all six parameters for 
the general O(13) positions, was indeed needed in 
order to describe the structure. 

A first attempt was made at the time the domain 
type of modulation (cf. § 1) was still believed to exist. 
Some 50 first-order satellites for k = 1 and 2 each were 
measured, and all structure-factor contributions [in- 
cluding those for O(1) and 0(3)] were supposed to have 
the form (20), with a parameter C~k (depending on i 
and k only) in place of the Bessel function, and zero 
phase angles for Na(1) and Na(2) as in (21) and (22). 
The other phase angles (~k were determined for each 
value of i and k separately, just as the C's. The search 
was performed by a Simplex program. A surprisingly 
good agreement was obtained, but some of the resul- 
ting C's and ('s clashed with any model conceived so 
far. (The cause of this clash, it later appeared, was not 
so much the domain type hypothesis - since for low 
orders of reflexion, square-wave and sine functions are 
hardly distinguishable - but rather the assumption of 
rectilinear modulation models as discussed below.) 

One of the major clues to the structure then came 
from the retigrams shown in Fig. 3. Looking at the 
dependence of the intensity on k and on m, the char- 
acteristic properties of Bessel functions of the kind 
occuring in (21) (as illustrated in the small plots in 
Fig. 3) were at once recognized in the retigrams for the 
higher k values. The departures from this trend increase 
with decreasing k. The parameter V¢ involved in (21) 
can be estimated even by visual inspection and is 
found to be 0.065. This phenomenon could only be 
explained by assuming that the Na atoms (whose 
atom form factor decreases much less with increasing k 
than is the case for O and C) have almost pure harmon- 
ic modulation functions. In that case, the resem- 
blance of the total structure factor to (21) can occur if 

Vc (or the phase angle 0 of Na(3) vanishes like those 
of Na(1) and Na(2) do by symmetry, and if all three 
have about the same amplitude Vc. 

A second attempt at parameter refinement was now 
made, using the harmonic approximation and with 
the above findings as starting data. The formula (19) 
had not yet been developed. Instead, a much simpler 
formula was used, based upon the supposition that for 
0(13): 

Us/ U~ = Vs/V~ = Ws/ W~ ('rectilinear modulation') 

(23) 

which means that O(13) is modulated along a straight 
line (in Ra). Without this supposition, the equations 
(9) define an ellipse in Ra as the locus of O(13).* 
Fourier synthesis of the average structure had given 
indications that the locus is rather elongated, so that 
(23) seemed to be a reasonable approximation. 
However, for k--  1 and 2 it proved impossible to obtain 
an agreement even approaching the quality of the first 
attempt. 

Re-examination of that first result then showed that 
the C's and ('s could be re-interpreted in terms of 
harmonic modulation so as to make some sense. In 
particular, it was reassuring to find that the results for 
all three sodium atoms (obtained from reflexions with 
k = l  and 2) agreed with the above-mentioned con- 
clusions from the retigrams for k > 5. 

The remaining contradictions were intriguing, since 
all parameters should be re-interpretable, provided 
that condition (23) is fulfilled. On the other hand the 
peculiarities in the C and ( parameters for oxygen and 
carbon could be explained qualitatively by assuming 
that the search program had adapted their values to 
a departure of O(13) from the rectilinear modulation 
(23). Unlike the parameters used later on, the C's and 
('s have this extra flexibility because their dependence 
on k is not fixed. Consequently, (23) was dropped, and 
the full expression (19) for 'elliptical modulation' was 
established and programmed. From then on, the search 
went smoothly. 

7. Choice of reflexions for refinement 

From the good agreement which at this stage was 
reached (using a Simplex program written originally 
by Dr J. W. Visser and elaborated by two of the 
present authors, v.A and den H.) it could safely be 
concluded that the modulation of all atoms is pre- 
ponderantly harmonic, as in equation (9). However, 
second and higher harmonics of the functions u,v,w 

* Indeed the three equat ions  (9) in the two variables sin 2rrz 
and cos 27rz are mutua l ly  consis tent  only if the de te rminant  
fo rmed  by the latter 's  coefficients plus the co lumn u,v, w van- 
ishes - which amoun t s  to a linear equa t ion  in u, v and w. Hence  
the locus lies in a plane;  that  it is an ellipse then fol lows f rom 
any pair  o f  the equa t ions  (9). 

A C 32B - 4* 
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cannot all be zero. This is apparent both from a 
structural viewpoint and from experimental data: 

(i) The rotation angle of the C-O(13) vectors, even 
over the short arc e of Fig. 2 is so large (roughly 40 ° 
between extremes) that rigorous validity of the 
harmonic equations (9) would entail variations of 
C-O distances of at least 0.04/~. 

This is hardly acceptable for such a strong bond; 
hence we expect a second harmonic of that magnitude 
in the v component of O(13). The argument is essen- 
tially the same by which one obtains even harmonics 
in the vertical component of the movement of a 
pendulum, as will be set out in detail in the discussion 
of bond lengths in § 10. 

(ii) For  second- and higher-order satellites there is 
sufficient correlation between Fo and Fc to substantiate 
the harmonic model. The agreement is, however, much 
less good than for m = 0  and + 1, see Fig. 4. The large 
and very significant discrepancies for k = 0 , m = 2  
demonstrate that some or all atoms have appreciable 
second harmonic terms in their u and w components as 
well, as explained below. 

A more detailed analysis will now be given to show 
how the various harmonics affect the intensities of 
satellites. 

Let us generalize (9) into 

u(z) = Uc sin (2zcr) + Us cos (2zcr) +/z(r) 

v(z) = Vc sin (2zcr)+ Vs cos (2fez)+ v(z) 

w(3) = W~ sin (2rcr)+ Ws cos (2zcr)+ 2(3) (24) 

with the understanding that this is essentially a Fourier 
series expansion" the first two terms represent the 
first harmonic, and the last stands for the second and 
all higher harmonics. It is assumed that the averages 
of u, v and w over one period vanish, so that there is no 
constant term in the series. 

Substituting (24) into the general structure factor 
formula (12) we find for the integral therein: 

I d3 (2~i{Z sin [2zc(3 +O]+mr+h ' l z+k ' v+ l ' 2 } )  exp 

(25) 

to be compared with (17) and with the same notation 
used there. 

Suppose that, for all values of 3, 

h ' l x+k 'v+l '2~  1, (26) 

an assumption justified by the good agreement obtained 
by assuming harmonic modulation. Then we may 
approximate the corresponding factor of the integrand 
as follows 

exp {2~i(h'/z + k'v + l'2)} ~ 1 

+ 2rd(h'tu + k'v + l ' 2 ) .  (27) 

Moreover, we now write the Fourier expansion ex- 
plicitly" 

q-c~  

h'It + k'v + l ' 2 =  ~ A, exp [2~in(r + O] (28) 

where A_,,=A,*, and on account of our assumptions 
Ao=A1 =0.  The origin is shifted by ( for convenience. 

Substituting (28) and (27) in (25), the integral is 
readily expressed in terms of Bessel functions. The 
complete result for the structure factor becomes, for 
one atom: 

Vo 
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Fig. 4. Plots of Fo vs Fc for (a) m = 0, (b) rn = + 1 (all reflexions 
with F> 10, except seven rejected because of strong extinc- 
tion). Similar plots on a larger scale (F> 3) demonstrate the 
difference in agreement for (c) second- and (d) first-order 
satellites, both representing the complete set with k = 2 or 3. 
The second-order satellites for k = 0 (e), though comparable 
in accuracy to (d), show a still weaker correlation. 
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F = f e x p  {2zci[h~ + k,f, + l~-m(~ +½)]} 

• 0r- c o  

x [J=(2rcZ) + 2~i ~ A,Jm_,(2zcZ)]. 
- - o o  

n # 0 ,  + 1  

(29) 

The second term in the second factor is, of course, 
the (approximate) contribution of the anharmonic 
terms in (24). 

In particular we find for the factor in square brackets 
in (29) 

for m = 0 :  Jo+4rci{Re(Az)Jz-iIm(A3)J3+...  } (30) 

for m = 1 : J1 + 2zci{- A z J  1 

q-A~J3-k-A3J2q-A~J4q-... } (31) 

for m = 2:,12 + 2~i{AzJo 

+ A ~ J 4 - A 3 J ~ + A ~ J s + . . . }  (32) 

where all Bessel functions have the same argument, 
viz. 2rcZ. 

Since, by assumption (26), the coefficients A, are 
small quantities, the bracketed sum in (30) and (31) is 
usually small compared with the first term. In (32), how- 
ever, the term 2rciAzJo is much larger than the terms with 
A2 in (30) and (31), at least for small ZwhereJo>>J~ > "]2. 
Striking discrepancies can be expected, even if A2 is 
quite small. As stated above, such discrepancies do 
indeed occur. Expressions like (30-32) for third and 
higher-order satellites again contain terms with J0, so 
these are as unreliable as the second-order satellites. 

For this reason the refinement of the harmonic- 
model modulation parameters has been based on main 
reflexions and first-order satellites only. 

8. The temperature factor 

In our refinement, the effect of heat motion on the 
diffraction amplitudes has been accounted for by a 
Debye-Waller factor of the usual type, expressed as 
follows in the components h'k'l' (14) of the diffraction 
vector: 

exp [ -  (bnh 'z + b2zk '2 + b33 l'z 

+ 2b~zh'k' + 2bz3k'l+ 2b13h'l')] (33) 

with individual tensors bii for Na(1), Na(2), Na(3), C, 
0(2) and O(13). The following symmetry restrictions 
on the tensor coefficients were introduced: for O(13): 
none; for the other atoms: blz=b23=O, just as if we 
were dealing with atoms [except O(13)] lying in the 
mirror plane of a normal structure. 

This conventional procedure was used ad hoc, so its 
main justification is the good agreement thus obtained 
rather than any deep consideration of the heat motion 
in modulated crystals. Still, it can be elucidated to 
some extent on the basis of two experimental facts: 

(i) Neither the main reflexion spots nor the satellites 
do show appreciable broadening. For large angles 20, 
reflexions of both kinds have been observed with 
separate Cu Kel and ez spots hardly broader than the 
spectral width. Hence the modulation must have a 
long-range order no less perfect than the periodicity 
of good crystals of the normal type. 

(ii) Localized diffuse scattering is observed in a wide 
range around the transition point at 360°C (Tuinstra, 
1974), but is extremely weak at room temperature. 
The general scattering, too, is quite normal as far as 
can be judged from our photographs. 

It follows from (i) that the atomic positions in the 
modulated structure can be regarded as well-ordered 
equilibrium positions in which the thermal motion is 
centred. The absence of abnormal diffuse scattering 
[cf. (ii)] indicates, moreover, that the thermal motion 
does not show a behaviour greatly different from that 
of normal crystals. Diffuse thermal scattering may, 
here too, be peaked at the reflexion sites in reciprocal 
space - but this will not be apparent from the results of 
routine type of measurements such as we made. 

Strictly speaking the actual thermal motion of an 
atom may well depend on the location of the unit cell 
in which it is situated, that is, on r~, cf. (7). In writing 
the factor as we have done in (33), we assume that this 
dependence has a negligible effect. If we had not done 
so, each blj of all six atoms would have had to be made 
a function of z'~, and the above symmetry restrictions 
would have been replaced by relations between such 
functions. Fortunately, the present approximation has 
proved to be adequate for our purpose. 

9. Results of least-squares refinement 

For further refinement a least-squares program has 
been written by one of us (P.), using as the major 
subroutine the least-squares program ORGLS of 
Busing & Levy (1962). The latter had to be slightly 
modified to serve our purposes. 

Attention has been paid to the structure factor 
calculation in order to save computer time: Bessel 
functions are not computed but are interpolated from 
tables; the structure-factor subroutine has two entries, 
one for each of the expressions (19) and (20); deriva- 
tives are computed numerically; the computation is 
economized in that each parameter is flagged when 
varied and only the contribution to the structure 
factor of flagged parameters is recomputed and added 
to the other contributions already stored in memory. 

The final refinement has been obtained in different 
stages, starting from the values produced by the 
Simplex program mentioned in §7. Non-observed 
reflexions have not been taken into consideration. 
Firstly, individual isotropic temperature factors were 
refined in three cycles with 758 main reflexions. 
Thereafter all atoms were given anisotropic temper- 
ature factors, and the program was run for three more 
cycles. 
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Finally, the number  of  reflexions was extended to 
1910 with the first-order satellites. Seven reflexions 
suspected of secondary extinction were omitted from 
this final list (22--20, 3T00, 1T20, 0020, 2020, 4020, 40]-0). 
The positional and modulat ion parameters now were 
included in the refinement and in five cycles the pro- 
gram refined 50 variables to S =  1-77, where S is the 
accuracy indicator 

s =  { 5, wA l(no- , 

no = number  of  observations, nv = number  of variables, 
A =llFobsl--IFca,cl l, w =  1/o "2, 0. is s tandard error of  F 
due to counting statistics. The final shifts were mostly 
smaller than the corresponding 0., and none was larger 
than 20.. 

The values of  some other residuals after the last 
cycle are" (~zl)/(~lFobsl)=0"108 (0.080 for m = 0 ,  and 
0.138 for Iml= 1), (~wV2d)/(~w'/ZlFobsl)=O.079, 
{(~wA2)/(~wlFobsl2)}m=O.070. The final values of 
the parameters are listed in Table 1 (a) and (b). Table 
2* lists Fo and Fc for all measured reflexions with Iml = 0, 
1 and 2. Separate plots of  Fobs vs Fca~¢ are presented in 
Fig. 4(a), (b) for m = 0  and for m =  + 1. The former 
plot shows a trace of extinction for reflexions with 
Fo > 30. The above set of  seven rejected reflexions, all 
with Fo > 50, had still greater discrepancies in the same 
sense. It is seen that the agreement for the satellites is 
hardly less good than it is for the main  reflexions. This 
is brought out also by the value of  S which is almost 
the same (1-15 and 1.19 for Iml = 0  and 1 respectively) 
as the above figure for the complete set. Fig. 4(c), (d), (e) 
illustrates the situation for second-order satellites, cf. 
§7. 

* Table 2 has been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 
31127 (26 pp., 1 microfiche). Copies may be obtained through 
The Executive Secretary, International Union of Crystallog- 
raphy, 13 White Friars, Chester CH1 Z1N, England. 

10. Description of the modulated structure 

In order to describe the modulated structure, one 
might draw a picture of the atomic positions in a large 
block of unit cells. We have actually done the calcu- 
lation required, as will become apparent  presently. 
However, a more condensed picture can be obtained 
by superimposing all these unit cells, while at the same 
time keeping track of the relation between the frac- 
tional atomic coordinates and the position of the unit 
cell in which the atom is situated. That relation follows 
directly from (7): moving from a given unit cell to 
another  by a shift nla+nzb+n3c yields new displace- 
ments u',v' ,w' for each atom which are obtained by 
letting each r'~ in (6) increase by the same number  

nlql + n2q2 + naq3 • (34) 

Because of the irrationali ty of at least one q~ (in our 
case, of  ql and q3) the fractional part of  the number  
(34) can take virtually any value between 0 and 1. 
Hence the entire crystal can be represented by a single 
unit cell, provided that, for each atom in this cell, the 
coordinates are specified as periodic functions of a 
new variable, t: 

u~=u(r~+t) v~=v(r~+t) w = w ( r i + t ) .  (35) 

No primes are needed now since the r~ refer to just one 
unit cell: 

T i = ql)~i -}- q2f2i q- qa~i 

where the unprimed ~ ,p , f  coordinates may, as usual, 
be made fractional numbers.  

In this mono-cell representation, the displacements 
u', v', w' of  an atom in different unit cells are not shown 
explicitly, but they can be derived at once by putt ing 
t equal to the corresponding value (34). 

The advantage gained is that all short-range relations 
between an atom and its environment  can now be 
studied as a function of t, without one's having to go 

Table 1. Positional and thermal parameters and final modulation parameters 

(a) Final positional and thermal parameters (x 104), el. also Table 4 

-'~ ~ -~ bu b22 b33 b12 bx3 b23 
Na(1) 0 0 0 39 (1) 122 (5) 79 (3) 0 20 (1) 0 
Na(2) 0 0 5000 42 (1) 74 (5) 80 (3) 0 23 (1) 0 
Na(3) 1706 (1) 5000 7478 (2) 50 (1) 148 (4) 157 (3) 0 30 (1) 0 
C 1641 (2) 5000 2496 (3) 25 (1) 73 (6) 59 (4) 0 10 (2) 0 
O(2) 2897 (2) 5000 1771 (3) 31 (1) 190 (6) 115 (3) 0 35 (2) 0 
O(13) 1016 (2) 2940 (3) 2855 (2) 58 (2) 93 (7) 135 (3) 14 (4) 20 (2) - 8  (4) 

(b) Final modulation parameters, expressed as Uc, Us... Ws (9) and also as U, V, W, ~, 
( x 104) 

Na(1) Vc 567 (4) V 0"297 (2) A 
Na(2) Vc 656 (4) . V 0.344 (2) 
Na(3) Vc 687 (3) Vs -57  (4) V 0-361 (2) 
C V¢ 589 (6) V~ 9 (7) V 0.308 (3) 
O(2) V~ 244 (5) V~ -78  (5) V 0.134 (3) 
O(13) U~ -275 (2) Us - 184 (3) U 0.295 (3) 

V~ 770 (4) V~ 70 (5) V 0-405 (2) 
IV, -214 (3) W~ -374 (4) W 0-260 (5) 

fl, y (9a) 

fl -4"8 (4) ° 
,8 0"9 (7) 
fl -17-7(11) 

-- 146"2 (7) 
fl 5"2 (4) 
y --119"8(5) 
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into the rather irrelevant question as to which unit cell 
of the crystal corresponds to a given value of t. In 
particular, interatomic distances as a function of t 
('distance functions') will be used extensively in the 
following discussion. 

The actual calculations have been made for 22 
equidistant values of t at intervals of ~-~2. This unusual 
choice was made for purely opportunistic reasons; it 
stems from an approximate description of the modul- 
ated structure by a periodic superstructure with base 
vectors A = 2a + 2c, B = b and C = - 7a + 4c. For the 
values of ql and q3 at room temperature, the modula- 
tion vector q* equals the reciprocal vector A* to within 
the experimental accuracy. The supercell contains 22 
unit cells. It has been used in order to allow the 
computation of distance functions using a normal 
program for calculating interatomic distances. 

After these introductory remarks we shall now 
discuss the structure in three sections: 

(i) General aspects of the modulation 
Table 2 shows that the Na atoms and the carbon 

atom all have an amplitude V close to 0.33 ,~. Their 
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Fig. 5. Projections of the CO3 ion. (a) along q*; (b) along the 
normal to b and q*; (c) along b. In (b), 0(2) has been left 
out; it would fall on the same vertical line as carbon. In (c), 
0(2) is indicated on the mirror line. Six positions of the ion 
at intervals of ~r in t are drawn in (a) and (b); only one of 
these six appears in (c). 

phases fl, too, are almost equal. Considering the carbon 
atom as the centre of a rigid CO3 ion, and disregarding 
for the moment the orientation of the latter, it can be 
concluded that the modulation very closely resembles 
a sinusoidal but otherwise homogeneous distortion of 
the entire structure, with an amplitude of 0.33/~ in the 
direction of b. We shall call this general aspect: the 
overall modulation. 

The rigidity of the COs ion is well confirmed by the 
relevant distance functions [cf. (ii) below]. Its orien- 
tational modulation however yields displacements dif- 
fering entirely from the pattern of the general distor- 
tion just mentioned. This can be seen from Fig. 5, 
showing projections of the CO3 ion in three mutually 
perpendicular directions two of which are along q* 
and b. It so happens that the line connecting C and 
0(2) is perpendicular to q* within the experimental 
accuracy, hence this system of axes is perfectly suited. 

In each projection the locus of the O(13) atoms (one 
or two ellipses) has been drawn, as well as the recti- 
linear loci of C and 0(2). The latter are both parallel to 
b and are therefore projected as a point in the b 
projection [Fig. 5(c)]. In Fig. 5(b) the two rectilinear 
loci coincide. Fig. 5(a) and (b) also show six positions 
of the actual CO3 ion [Fig. 5(c) only one, for clarity's 
sake]. These six correspond to Nos. 1, 3, 5, 7, 9 and 11 
of the above-mentioned set of 22 full coordinate lists 
at intervals of ~ in t. The orientational modulation 
of each CO3 is seen to consist of two components: 

(1) A libration in its own plane with an amplitude 
of about 9 °, roughly 13 o out of phase with the overall 
modulation of the C atom, in a sense so as to reduce 
the amplitude of 0(2). 

(2) A libration about the direction C-O(2) with an 
amplitude of about 20 o, roughly 45 o out of phase with 
the overall modulation. [A third component of libra- 
tion, about an axis parallel to b, is not excluded in 
principle but it cannot occur in the harmonic model 
which for 0(2) and for C allows displacements parallel 
to b only, cf. § 5.] 

The second component is the one which corresponds 
to Fig. 2. Comparison of Fig. 5(b) with that stylized 
figure shows the considerable complexity caused by 
the additional overall translation and by the libration 
(1). The ensuing displacement of O(13) is by far the 
largest of all" its actual elliptical locus in space has a 
long axis of 1.01 /~ and a short one of 0.40/~. 

(ii) Configuration of the COa ion 
For this section and the next one, the data on 

distance functions in Table 3 and Fig. 6 should be 
consulted. They are based on the results of the afore- 
mentioned supercell computation, in which all inter- 
atomic distances up to 3-3 A have been calculated. 

Apart  from the average value of each distance, the 
fluctuations as revealed by the distance functions are 
of considerable interest. For our harmonic modulation 
model, we expect such fluctuations to be harmonic as 
well (that is, sinusoidal with a period of 1 in t). Second 
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Table 3. Data on distance functions 

The letters a . . . p  refer to Fig. 7. 
M a x . -  

Min. Max. Average Min. 
C 0(2) intra-CO3 1.28 1.29 1.29 0.01" 
C O(13) intra-CO~ 1.25 1.31 1.28 0.06 
O(2)--O(13) intra-CO3 2-19 2.24 2.22 0.05 
O(13)-O(13) intra-CO3 2.17 2-26 2.22 0.10" 
Na(1)-O(2) a 2.33 2.34 2.34 0.01" 
Na(1)-O(13) b 2.34 2.45 2.39 0-11 
Na(2)-O(2) c 2.42 2.44 2.43 0.02* 
Na(2)-O(13) d 2.31 2-36 2.33 0.05 
Na(3)-O(2) e 2.60 2.62 2.61 0.02* 
Na(3)-O(2) f 2.42 2-93 2.67 0.51 
Na(3)-O(13) g 2.34 2.92 2.63 0.59 
Na(3)-O(13) h 2.39 2.80 2.60 0.41 
Na(3)-O(13) i 2.65 3-25 2.95 0.59 
Na(3)-Na(1) k 3.03 3.05 3.04 0.02* 
Na(3)-Na(2) l 3.08 3.23 3.15 0.15 
Na(1)-Na(2) m 3.02 3.04 3"03 0.02* 
O(2)--O(13) n 3.06 3"26 3" 16 0.20 
O(13)-O(13) p 3.09 3"15 3"12 0.07* 

* These 'special distances' have the period -It because of the 
glide mirror. 

and higher harmonics  can be caused only by the non- 
l inear dependence of  distance on the coordinates 
involved; they will usually have small amplitudes, and 
they have no direct structural significance. 

In this respect, a distinction should be made between 
'general '  and 'special '  distances. The name 'special '  
refers to a distance between a pair of  atoms which - 
as a pair - is invariant  for the glide mirror  operator in 
R4, such as the distance between both O(13) atoms of 
the same CO3 ion. (An equivalent and more convenient 
criterion is: invariance of the pair in the average 
structure for the mirror  plane of  that structure.) It 
follows that a special distance, like the pair to which 
it belongs, is invariant  for the glide mirror. Since the 
latter involves a shift of  i in t, a special distance has 
the period ½ in t: with harmonic  modulat ion,  it can 
merely show the artificial fluctuations discussed above, 
and none of  the more interesting first harmonic  
phenomena.  

Regarding the COa ion, a separate calculation 
shows the distance from C to the plane containing the 
three O atoms (which is a special distance in the above 
sense) to be as small  as 0.002/k.  Hence the planari ty 
of  the anion is well confirmed. The C - O  distances agree 
with recent data, e.g. on K2CO3 (Gatehouse & Lloyd, 
1973)' 

The expected threefold symmetry axis, too, is cor- 
roborated,  both  by the C - O  and by the O - O  distance 
functions. Fig. 6 shows the prominent  but artificial 
fluctuations (with period ½) of the special O(13)-O(13) 
distance. The fact that also the general distances 
C-O(13) and O(2)-O(13) show only second harmonic  
fluctuations supports the statement (i) in §7, namely 
that  a considerable second harmonic  term can be 
expected in the modula t ion  functions of  O(13) in order 
to compensate these improbably  large fluctuations in 
the length of  what are known to be strong bonds. 

(iii) Coordination of  the Na atoms 
In Fig. 7, part  of  the structure projected along b has 

been redrawn in the same way as in Fig. l(a). No  great 

t3~_  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c - ~ )  
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Fig. 6. Distance functions, c~ also Fig. 7 for the significance 
of the letters. Brol~en lines" special distances. Full lines: 
general distances. 
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Fig. 7. Part of the structure redrawn as in Fig. l(a). The two 
O(13) atoms of each CO3 ion symbolize the actual modulated 
structure as shown in Fig. 5(c). The circumference of the 
octahedra surrounding Na(1) and Na(2) is drawn in full lines, 
so as to indicate the chain parallel to c which they form by 
sharing faces. Also the coordination of Na(3) by nine oxygen 
atoms (bond e single; f, g, h and i each representing two 
equivalent bonds) is indicated. Hatched: anions and Na at 
y = ½; other: same at y = 0. 
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significance should be attached to the two O(13) atoms 
appearing in this figure for each CO3 ion; they symbol- 
ize the locus of O(13) which we now know to be the 
two ellipses of Fig. 5, coinciding in this projection 
[Fig. 5(c)]. They should be counted as one O atom 
about 1 ,~ above the average level of C and 0(2), plus 
another about 1 ,~ below that level. Accordingly, 
we observe that both Na(1) and Na(2) have an un- 
mistakable octahedral coordination by two 0(2) and 
four O(13) each. The corresponding average distances 
are seen to lie between 2.33 and 2.43. Their fluctuations 
are small except for that of the general distance b. 
Even there, the general picture of octahedral coor- 
dination is well preserved. 

For the Na(3) atoms, Fig. 7 at first sight seems to 
show an octahedron of surrounding O atoms as well, 
with one diagonal in the direction of the b axis. 
Looking closer, we observe that bonds g, h and i 
actually stand for two bonds each, directed to O atoms 
at a y level different from that of Na(3). Such a pair 
of equivalent bonds occurs indeed for every general 
distance. The two bonds of each pair are related by the 
glide mirror in R4, so their distance functions are 
identical except for a phase difference of ½ in t. 

In all such cases, only one curve has been drawn in 
Fig. 6. The choice between the two possible phases 
was not relevant for bonds like C-O(13), b or d. In the 
case of Na(3)-O bonds, the choice has been made in 
such a way that the corresponding curves in Fig. 6 
refer to bonds to the same Na(3) atom, with the same 
sign of their y component (that is, all pointing obliquely 
u p w a r d -  or all d o w n w a r d -  from the plane of Fig. 
7). 

Hence in total, nine O atoms are more or less 
involved in the coordination of Na(3). Except for the 
special distance e, however, all these bonds show huge 
fluctuations, so the actual coordination depends very 
strongly on the value of t. On the whole, it is much 
looser than that of Na(1) and Na(2). 

Two general features can be detected in the structure: 
(a) There is clearly a framework of chains, running 

in the direction of c, each consisting of alternating 
Na(1)O6 and Na(2)O6 octahedra sharing faces. The 
shortest O-O distances (not intra-CO3) are actually 
the edges n and p of the shared faces (the next longer 
one has a minimum of as much as 3.21 .~). The chains 
are mutually connected, both in the direction of b and 
of a, by CO3 ions. The Na(3) atoms occupy the 
remaining spacious voids. 

(b) The strongest Na-O bonds are, on the whole, 
those which make the larger angle with the direction 
of q*. This applies to bonds a and d o f  Na(1) and Na(2), 
as well as to those Na(3)-O bonds (f, g and h) which 
for some value of t become shorter than 2.50 A. 

An even stronger correlation with the direction of 
q* is shown by the tensor ellipsoids of the thermal 
motion. 

In Table 4, the mean square amplitudes of thermal 
motion along the major ellipsoid axes are shown 

[approximately for O(13), neglecting b12 and b23, and 
exactly for the other atoms]. Moreover, the angle ~0 
between the a axis and the longer of the two major 
axes in the xz plane is listed. Comparing the latter 
with the corresponding azimuth of q*, we observe that 
thermal motion in the xz plane is for all atoms aniso- 
tropic in the same way, with the strongest amplitude 
in a direction quite close to the vector q*. 

Table 4. Mean square amplitudes (x  104A 2) of  
thermal motion in the directions of  b and of  the 
smaller and larger axes of  the thermal ellipsoid 

The last column gives the angle ¢p between the larger axis and a. 
Errors in ~0 have been estimated from the errors in the other 
figures, which amount to 2-4 %. 

Major axis: lib _l_b smaller _l_b larger ~0 (°) 
Na(1) 169 115 165 44 (5) 
Na(2) 103 113 179 42 (5) 
Na(3) 206 175 285 74 (5) 
C 101 91 109 68 (15) 
0(2) 265 74 226 72 (3) 
0(13) 128 222 242 69 (25) 

q* : 76.7 

However, for the C and O atoms this correlation 
may be due to thc fact that q* is perpendicular to the 
plane of the CO3 ion. The relevant figures in Table 4 
can be roughly accounted for by assuming a rigid-body 
thermal motion of the anion with small translational 
components, but with rather large librations about 
axes in its own plane as well as about its normal. 
The latter component produces mean square ampli- 
tudes of 4 x and ¼ for O(13), when those for 0(2) are 
set at 1 and 0, in the first and second column of Table 4 
respectively - which corresponds well with the trend 
observed in the actual figures. The thermal librations 
about the other axes merely contribute to the third 
column figures for the O atoms. 

In this connexion it can be remarked that the cor- 
relation matrix produced by the refinement program 
shows considerable correlation (0.2-0.3) between b ,  
and the modulation parameter for the ith axis (espe- 
cially b22 and Vc) for all atoms - as expected, since 
for the main reflexions these parameters have a 
similar effect. Otherwise, correlation coefficients be- 
tween thermal and either positional or modulation 
parameters are seldom larger than 0.05, which again 
seems to justify our treatment of thermal motion as a 
phenomenon distinct from the modulation and entirely 
comparable to that in normal crystals. 
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The Crystal and Molecular Structure of a Derivative of the Triterpene Spergulagenin A 
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12-O-Acetylspergulagenin A ethylene ketal, C34H5606, m.p. 265°C, orthorhombic, P212121, Z=4,  a= 
9.903 (1), b= 15-127 (1), c=21.184 (1)/~, M=560.8, Din= 1"16 (1) g cm -3, Dx= 1"174 g cm -3, 23°C, 
/z= 6-3 cm-1. Intensity data were collected with an automatic X-ray diffractometer. The structure was 
solved by direct methods including calculation of structure invariants and refined by least-squares meth- 
ods to a final conventional R of 0.037. Spergulagenin A possesses a new migrated hopane skeleton 
with a methyl ketone moiety in the E ring as a side chain. 

Introduction 

Spergulagenin A (I), C30H5004, is a new triterpene 
which was isolated as one of the root sapogenols from 
Mollugo spergula L. Chemical and spectroscopic studies 
suggested that ( I )had a migrated hopane or a lupane 
skeleton. In order to determine the chemical structure, 
an X-ray analysis of 12-O-acetylspergulagenin ethylene 
ketal (II) was undertaken. A preliminary report of 
this work has already been published (Kitagawa, Suzu- 
ki, Yosioka, Akiyama & Silverton, 1974). 
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HO 

(I) 

OA~ 

• 

H O . ~ . , ~ V  j . , , . , , , ,~ , ,_  " - -OH 
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Experimental 

Crystals were obtained by the conversion of sper- 
gulagenin A (I) to an ethylene ketal followed by partial 
acetylation. The product (II) was separated by chro- 
matography and crystallized from ethanol as colorless 
prisms. Crystals used were ground to spheres 
(No. 1; r=0"2 ram, No. 2; r=0"3 ram). Cell 
dimensions were obtained by least-squares refinement 
using 15 Bragg angles measured at +0. (Cu Ks 
X-radiation 2 =  1.5418 A.) 3505 independent data (304 
unobserved: 3cr) were measured (maximum sin 0/2: 
0.617 /~-1) on an Enraf-Nonius CAD-4 diffractom- 
eter using techniques described by Silverton, Milne, 
Eaton, Nyi & Temme (1974). Three standard reflec- 
tions, measured at intervals of every 45 reflections, 
showed some irradiation damage to be taking place 
and, after the intensities of the standards had dropped 
by 4 %, the data crystal was replaced, The second crys- 
tal, used for about one third of the data, showed a 
drop of 2% in the intensities of the standards. The 
first data set was divided into two nearly equal parts 
and three scale factors, initially evaluated from the 
standards, were used as parameters in the refinement 
but final relative refined scale factors did not differ 
significantly from their original values. Lorentz and 
polarization corrections were applied but no correc- 
tions for absorption were made (no significant inten- 
sity changes were observed in azimuthal scans of 
several reflections.) The distribution of E values 


